Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 221: 105767, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040199

RESUMO

Tick-borne encephalitis virus (TBEV), the causative agent of tick-borne encephalitis (TBE), is a medically important flavivirus endemic to the European-Asian continent. Although more than 12,000 clinical cases are reported annually worldwide, there is no anti-TBEV therapy available to treat patients with TBE. Porphyrins are macrocyclic molecules consisting of a planar tetrapyrrolic ring that can coordinate a metal cation. In this study, we investigated the cytotoxicity and anti-TBEV activity of a large series of alkyl- or (het)aryl-substituted porphyrins, metalloporphyrins, and chlorins and characterized their molecular interactions with the viral envelope in detail. Our structure-activity relationship study showed that the tetrapyrrole ring is an essential structural element for anti-TBEV activity, but that the presence of different structurally distinct side chains with different lengths, charges, and rigidity or metal cation coordination can significantly alter the antiviral potency of porphyrin scaffolds. Porphyrins were demonstrated to interact with the TBEV lipid membrane and envelope protein E, disrupt the TBEV envelope and inhibit the TBEV entry/fusion machinery. The crucial mechanism of the anti-TBEV activity of porphyrins is based on photosensitization and the formation of highly reactive singlet oxygen. In addition to blocking viral entry and fusion, porphyrins were also observed to interact with RNA oligonucleotides derived from TBEV genomic RNA, indicating that these compounds could target multiple viral/cellular structures. Furthermore, immunization of mice with porphyrin-inactivated TBEV resulted in the formation of TBEV-neutralizing antibodies and protected the mice from TBEV infection. Porphyrins can thus be used to inactivate TBEV while retaining the immunogenic properties of the virus and could be useful for producing new inactivated TBEV vaccines.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Porfirinas , Humanos , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Anticorpos Antivirais/uso terapêutico , Envelope Viral , Internalização do Vírus , Porfirinas/farmacologia , Porfirinas/uso terapêutico , RNA , Antivirais/farmacologia , Antivirais/uso terapêutico , Cátions/uso terapêutico
2.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003673

RESUMO

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.


Assuntos
Herpesvirus Humano 1 , Perileno , Fotoquimioterapia , Perileno/farmacologia , Oxigênio Singlete , Antivirais/farmacologia , Antivirais/química , Fármacos Fotossensibilizantes/farmacologia
3.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687107

RESUMO

Perylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphenols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro. Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the virus into the host cell. Furthermore, these compounds demonstrate an ability to generate singlet oxygen when exposed to visible light. The rate of singlet oxygen production is positively correlated with antiviral activity, confirming that the inhibition of fusion is primarily due to singlet-oxygen-induced damage to the viral envelope. The unique combination of a shape that affords affinity to the lipid bilayer and the capacity to generate singlet oxygen makes perylenylethynylphenols highly effective scaffolds against enveloped viruses. The anticoronaviral activity of perylenylethynylphenols is strictly light-dependent and disappears in the absence of daylight (under red light). Moreover, these compounds exhibit negligible cytotoxicity, highlighting their significant potential for further exploration of the precise antiviral mechanism and the broader scope and limitations of this compound class.


Assuntos
COVID-19 , Oxigênio Singlete , Animais , Gatos , SARS-CoV-2 , Membranas , Antivirais/farmacologia
4.
Virus Res ; 334: 199158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37339718

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions. These compounds showed nanomolar or sub-micromolar dose-dependent anti-SARS-CoV-2 activity, and also suppressed the in vitro replication of feline coronavirus (FCoV), also termed feline infectious peritonitis virus (FIPV). Perylene compounds exhibited high affinity for liposomal and cellular membranes, and efficiently intercalated into the envelopes of SARS-CoV-2 virions, thereby blocking the viral-cell fusion machinery. Furthermore, the studied compounds were demonstrated to be potent photosensitizers, generating reactive oxygen species (ROS), and their anti-SARS-CoV-2 activities were considerably enhanced after irradiation with blue light. Our results indicated that photosensitization is the major mechanism underlying the anti-SARS-CoV-2 activity of perylene derivatives, with these compounds completely losing their antiviral potency under red light. Overall, perylene-based compounds are broad-spectrum antivirals against multiple enveloped viruses, with antiviral action based on light-induced photochemical damage (ROS-mediated, likely singlet oxygen-mediated), causing impairment of viral membrane rheology.


Assuntos
COVID-19 , Perileno , Animais , Gatos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Oxigênio Singlete , Perileno/farmacologia , Envelope Viral , Espécies Reativas de Oxigênio , Vírion
5.
J Virol Methods ; 317: 114744, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119976

RESUMO

West Nile virus (WNV) is transmitted to humans and animals by a mosquito and enters the central nervous system, leading to lethal encephalitis. Reporter viruses expressing fluorescent proteins enable detection of infected cells in vitro and in vivo, facilitating evaluation of the dynamics of viral infection, and the development of diagnostic or therapeutic methods. In this study, we developed a method for production of a recombinant replication-competent WNV expressing mCherry fluorescent protein. The expression of mCherry was observed in viral antigen-positive cells in vitro and in vivo, but the growth of the reporter WNV was reduced as compared to the parental WNV. The expression of mCherry was stable during 5 passages in reporter WNV-infected culture cells. Neurological symptoms were observed in mice inoculated intracranially with the reporter WNV. The reporter WNV expressing mCherry will facilitate research into WNV replication in mouse brains.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Camundongos , Animais , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/veterinária , Proteínas Recombinantes/genética
6.
Antiviral Res ; 210: 105504, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36574904

RESUMO

Tick-borne encephalitis (TBE) is a potentially fatal disease common in much of Europe and Asia. There is no specific therapy for the treatment of TBE patients. However, several efforts are being made to develop small molecules that specifically interfere with the life cycle of TBE virus. In particular, recently various nucleoside analogues that can inhibit the viral replicase, such as the RNA-dependent RNA polymerase or viral methyltransferases, have been explored. In addition, human or chimeric (i.e., structural chimeras that combine mouse variable domains with human constant domains) monoclonal antibodies with promising potential for post-exposure prophylaxis or early therapy have been developed. This review summarizes the latest directions and experimental approaches that may be used to combat TBE in humans.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Animais , Camundongos , Europa (Continente) , Ásia , Terapias em Estudo
7.
Nucleic Acids Res ; 50(8): 4574-4600, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420134

RESUMO

We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.


Assuntos
Antivirais , Vírus da Encefalite Transmitidos por Carrapatos , Quadruplex G , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/tratamento farmacológico , Encefalite Transmitida por Carrapatos/genética , Humanos , Ligantes , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
8.
Molecules ; 27(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335258

RESUMO

Positive-sense single-stranded RNA (+RNA) viruses have proven to be important pathogens that are able to threaten and deeply damage modern societies, as illustrated by the ongoing COVID-19 pandemic. Therefore, compounds active against most or many +RNA viruses are urgently needed. Here, we present PR673, a helquat-like compound that is able to inhibit the replication of SARS-CoV-2 and tick-borne encephalitis virus in cell culture. Using in vitro polymerase assays, we demonstrate that PR673 inhibits RNA synthesis by viral RNA-dependent RNA polymerases (RdRps). Our results illustrate that the development of broad-spectrum non-nucleoside inhibitors of RdRps is feasible.


Assuntos
COVID-19 , Vírus da Encefalite Transmitidos por Carrapatos , Humanos , Pandemias , RNA Polimerase Dependente de RNA , SARS-CoV-2
9.
Viruses ; 14(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35215947

RESUMO

Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from Flaviviridae, Phenuiviridae, Rhabdoviridae, and Herpesviridae families. Diphyllin is not cytotoxic for Vero and BHK-21 cells up to 100 µM and exerts a sub-micromolar or low-micromolar antiviral activity against tick-borne encephalitis virus, West Nile virus, Zika virus, Rift Valley fever virus, rabies virus, and herpes-simplex virus type 1. Our study shows that diphyllin is a broad-spectrum host cell-targeting antiviral agent that blocks the replication of multiple phylogenetically unrelated enveloped RNA and DNA viruses. In support of this, we also demonstrate that diphyllin is more than just a vacuolar (H+)ATPase inhibitor but may employ other antiviral mechanisms of action to inhibit the replication cycles of those viruses that do not enter host cells by endocytosis followed by low pH-dependent membrane fusion.


Assuntos
Antivirais/farmacologia , Lignanas/farmacologia , Vírus/efeitos dos fármacos , Animais , Antígenos Virais/metabolismo , Antivirais/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Lignanas/síntese química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Vírus/classificação , Vírus/metabolismo
10.
EBioMedicine ; 76: 103818, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35078012

RESUMO

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Deriva e Deslocamento Antigênicos , Antineoplásicos Imunológicos/uso terapêutico , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/patologia , Camundongos , Mutação , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
11.
Viruses ; 13(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34452451

RESUMO

SARS-CoV-2 has caused an extensive pandemic of COVID-19 all around the world. Key viral enzymes are suitable molecular targets for the development of new antivirals against SARS-CoV-2 which could represent potential treatments of the corresponding disease. With respect to its essential role in the replication of viral RNA, RNA-dependent RNA polymerase (RdRp) is one of the prime targets. HeE1-2Tyr and related derivatives were originally discovered as inhibitors of the RdRp of flaviviruses. Here, we present that these pyridobenzothiazole derivatives also significantly inhibit SARS-CoV-2 RdRp, as demonstrated using both polymerase- and cell-based antiviral assays.


Assuntos
Antivirais/farmacologia , Benzotiazóis/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Piridonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , SARS-CoV-2/enzimologia , SARS-CoV-2/fisiologia
12.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668694

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a causative agent of the pandemic coronavirus disease 2019 (COVID-19), which has resulted in over two million deaths worldwide to date. Diphyllin and diphyllinosides are known as natural blockers of cellular vacuolar ATPases, and so can act as inhibitors of the pH-dependent fusion of viral envelopes with host cell endosomal membranes. Such pH-dependent fusion is a critical early step during the SARS-CoV-2 replication cycle. Accordingly, the anti-SARS-CoV-2 profiles and cytotoxicities of diphyllin, diphyllinoside cleistanthin B, and two structurally related compounds, helioxanthin 8-1 and helioxanthin 5-4-2, are evaluated here using in vitro cell-based assay systems. Neither helioxanthin exhibits any obvious anti-SARS-CoV-2 effects in vitro. By contrast diphyllin and cleistanthin B do exhibit anti-SARS-CoV-2 effects in Vero cells, with respective 50% effective concentrations (EC50) values of 1.92 and 6.51 µM. Diphyllin displays anti-SARS-CoV-2 effect also in colorectal adenocarcinoma (CaCo-2) cells. Moreover, when diphyllin is added at various times post infection, a significant decrease in viral titer is observed in SARS-CoV-2-infected Vero cells, even at high viral multiplicities of infection. Importantly, neither diphyllin nor cleistanthin B are found cytotoxic to Vero cells in concentrations up to 100 µM. However, the cytotoxic effect of diphyllin is more pronounced in Vero E6 and CaCo-2 cells. Overall, our data demonstrate that diphyllin and diphyllin analogues might be perfected as anti-SARS-CoV-2 agents in future preclinical studies, most especially if nanomedicine approaches may be invoked to optimize functional drug delivery to virus infected cells.

13.
ACS Infect Dis ; 7(2): 471-478, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33395259

RESUMO

A series of 7-deazaadenine ribonucleosides bearing alkyl, alkenyl, alkynyl, aryl, or hetaryl groups at position 7 as well as their 5'-O-triphosphates and two types of monophosphate prodrugs (phosphoramidates and S-acylthioethanol esters) were prepared and tested for antiviral activity against selected RNA viruses (Dengue, Zika, tick-borne encephalitis, West Nile, and SARS-CoV-2). The modified triphosphates inhibited the viral RNA-dependent RNA polymerases at micromolar concentrations through the incorporation of the modified nucleotide and stopping a further extension of the RNA chain. 7-Deazaadenosine nucleosides bearing ethynyl or small hetaryl groups at position 7 showed (sub)micromolar antiviral activities but significant cytotoxicity, whereas the nucleosides bearing bulkier heterocycles were still active but less toxic. Unexpectedly, the monophosphate prodrugs were similarly or less active than the corresponding nucleosides in the in vitro antiviral assays, although the bis(S-acylthioethanol) prodrug 14h was transported to the Huh7 cells and efficiently released the nucleoside monophosphate.


Assuntos
Antivirais/farmacologia , Pró-Fármacos/farmacologia , Purinas/farmacologia , Vírus de RNA/efeitos dos fármacos , Ribonucleosídeos/farmacologia , COVID-19/virologia , Linhagem Celular Tumoral , Vírus da Dengue/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Humanos , Fosfatos/farmacologia , Nucleosídeos de Purina , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
14.
Antiviral Res ; 185: 104968, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157129

RESUMO

The flavivirus, tick-borne encephalitis virus (TBEV) is transmitted by Ixodes spp. ticks and may cause severe and potentially lethal neurological tick-borne encephalitis (TBE) in humans. Studying TBEV requires the use of secondary methodologies to detect the virus in infected cells. To overcome this problem, we rationally designed and constructed a recombinant reporter TBEV that stably expressed the mCherry reporter protein. The resulting TBEV reporter virus (named mCherry-TBEV) and wild-type parental TBEV exhibited similar growth kinetics in cultured cells; however, the mCherry-TBEV virus produced smaller plaques. The magnitude of mCherry expression correlated well with progeny virus production but remained stable over <4 passages in cell culture. Using well-characterized antiviral compounds known to inhibit TBEV, 2'-C-methyladenosine and 2'-deoxy-2'-ß-hydroxy-4'-azidocytidine (RO-9187), we demonstrated that mCherry-TBEV is suitable for high-throughput screening of antiviral drugs. Serum samples from a TBEV-vaccinated human and a TBEV-infected dog were used to evaluate the mCherry-based neutralization test. Collectively, recombinant mCherry-TBEV reporter virus described here provides a powerful tool to facilitate the identification of potential antiviral agents, and to measure levels of neutralizing antibodies in human and animal sera.


Assuntos
Anticorpos Neutralizantes/sangue , Antivirais/isolamento & purificação , Vírus da Encefalite Transmitidos por Carrapatos/genética , Ensaios de Triagem em Larga Escala/métodos , Proteínas Luminescentes/genética , Testes de Neutralização , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Cricetinae , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Humanos , Rim/citologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-33229424

RESUMO

Emerging flaviviruses are causative agents of severe and life-threatening diseases, against which no approved therapies are available. Among the nucleoside analogues, which represent a promising group of potentially therapeutic compounds, fluorine-substituted nucleosides are characterized by unique structural and functional properties. Despite having first been synthesized almost 5 decades ago, they still offer new therapeutic opportunities as inhibitors of essential viral or cellular enzymes active in nucleic acid replication/transcription or nucleoside/nucleotide metabolism. Here, we report evaluation of the antiflaviviral activity of 28 nucleoside analogues, each modified with a fluoro substituent at different positions of the ribose ring and/or heterocyclic nucleobase. Our antiviral screening revealed that 3'-deoxy-3'-fluoroadenosine exerted a low-micromolar antiviral effect against tick-borne encephalitis virus (TBEV), Zika virus, and West Nile virus (WNV) (EC50 values from 1.1 ± 0.1 µM to 4.7 ± 1.5 µM), which was manifested in host cell lines of neural and extraneural origin. The compound did not display any measurable cytotoxicity up to concentrations of 25 µM but had an observable cytostatic effect, resulting in suppression of cell proliferation at concentrations of >12.5 µM. Novel approaches based on quantitative phase imaging using holographic microscopy were developed for advanced characterization of antiviral and cytotoxic profiles of 3'-deoxy-3'-fluoroadenosine in vitro In addition to its antiviral activity in cell cultures, 3'-deoxy-3'-fluoroadenosine was active in vivo in mouse models of TBEV and WNV infection. Our results demonstrate that fluoro-modified nucleosides represent a group of bioactive molecules with excellent potential to serve as prospective broad-spectrum antivirals in antiviral research and drug development.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Infecção por Zika virus , Zika virus , Animais , Antivirais/farmacologia , Desoxiadenosinas/farmacologia , Camundongos , Estudos Prospectivos , Replicação Viral
16.
Virology ; 546: 13-19, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452412

RESUMO

Tick-borne encephalitis virus (TBEV) is a medically important representative of the Flaviviridae family. The TBEV genome encodes a single polyprotein, which is co/post-translationally cleaved into three structural and seven non-structural proteins. Of the non-structural proteins, NS5, contains an RNA-dependent RNA polymerase (RdRp) domain that is highly conserved and is responsible for the genome replication. Screening for potential antivirals was done using a hybrid receptor and ligand-based pharmacophore search likely targeting the RdRp domain. For the identification of pharmacophores, a mixture of small probe molecules and nucleotide triphosphates were used. The ligand/receptor interaction screenings of structures from the ZINC database resulted in five compounds. Zinc 3677 and 7151 exhibited lower cytotoxicity and were tested for their antiviral effect against TBEV in vitro. Zinc 3677 inhibited TBEV at micromolar concentrations. The results indicate that Zinc 3677 represents a good target for structure-activity optimizations leading potentially to a discovery of effective TBEV antivirals.


Assuntos
Antivirais/farmacologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/enzimologia , Encefalite Transmitida por Carrapatos/virologia , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Humanos , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Carrapatos/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
17.
Microorganisms ; 8(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326119

RESUMO

Vector-borne flaviviruses (VBFs) affect human health worldwide, but no approved drugs are available specifically to treat VBF-associated infections. Here, we performed in silico screening of a library of U.S. Food and Drug Administration-approved antiviral drugs for their interaction with Zika virus proteins. Twelve hit drugs were identified by the docking experiments and tested in cell-based antiviral assay systems. Efavirenz, tipranavir, and dasabuvir at micromolar concentrations were identified to inhibit all VBFs tested; i.e., two representatives of mosquito-borne flaviviruses (Zika and West Nile viruses) and one representative of flaviviruses transmitted by ticks (tick-borne encephalitis virus). The results warrant further research into these drugs, either individually or in combination, as possible pan-flavivirus inhibitors.

18.
Vaccines (Basel) ; 8(1)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059489

RESUMO

Vaccination against tick-borne encephalitis (TBE) is based on the use of formalin-inactivated, culture-derived whole-virus vaccines. Immune response following vaccination is primarily directed to the viral envelope (E) protein, the major viral surface antigen. In Europe, two TBE vaccines are available in adult and pediatric formulations, namely FSME-IMMUN® (Pfizer) and Encepur® (GlaxoSmithKline). Herein, we analyzed the content of these vaccines using mass spectrometry (MS). The MS analysis revealed that the Encepur vaccine contains not only proteins of the whole virus particle, but also viral non-structural protein 1 (NS1). MS analysis of the FSME-IMMUN vaccine failed due to the high content of human serum albumin used as a stabilizer in the vaccine. However, the presence of NS1 in FSME-IMMUN was confirmed by immunization of mice with six doses of this vaccine, which led to a robust anti-NS1 antibody response. NS1-specific Western blot analysis also detected anti-NS1 antibodies in sera of humans who received multiple doses of either of these two vaccines; however, most vaccinees who received ≤3 doses were negative for NS1-specific antibodies. The contribution of NS1-specific antibodies to protection against TBE was demonstrated by immunization of mice with purified NS1 antigen, which led to a significant (p < 0.01) prolongation of the mean survival time after lethal virus challenge. This indicates that stimulation of anti-NS1 immunity by the TBE vaccines may increase their protective effect.

19.
Bioorg Med Chem Lett ; 30(4): 126897, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31882298

RESUMO

The nucleoside/nucleotide derived antiviral agents have been the most important components of antiviral therapy used in clinics. Recently, the focus of the medicinal chemists within this exciting research field has been affected mainly by the lack of effective therapies for the Hepatitis C virus (HCV) infection and several other "neglected" diseases caused by viruses such as Zika or Dengue. 2'-Methyl modified nucleosides and their monophosphate prodrugs (ProTides) have revolutionized the therapies for HCV in the last few years and, according to the latest research efforts, have also brought a promise for treatment of diseases caused by other members of Flaviviridae family. Here, we report on the design and synthesis of 5'-N and S modified ProTides derived from 2'-methyladenosine. We studied potential applicability of these derivatives as prodrugs of this archetypal antiviral compound.


Assuntos
Antivirais/química , Nucleotídeos/química , Pró-Fármacos/química , Adenosina/análogos & derivados , Adenosina/química , Antivirais/síntese química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Enxofre/química , Zika virus/efeitos dos fármacos
20.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31142664

RESUMO

The adenosine analogue galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, has entered a phase 1 clinical safety and pharmacokinetics study in healthy subjects and is under clinical development for treatment of Ebola and yellow fever virus infections. Moreover, galidesivir also inhibits the reproduction of tick-borne encephalitis virus (TBEV) and numerous other medically important flaviviruses. Until now, studies of this antiviral agent have not yielded resistant viruses. Here, we demonstrate that an E460D substitution in the active site of TBEV RNA-dependent RNA polymerase (RdRp) confers resistance to galidesivir in cell culture. Galidesivir-resistant TBEV exhibited no cross-resistance to structurally different antiviral nucleoside analogues, such as 7-deaza-2'-C-methyladenosine, 2'-C-methyladenosine, and 4'-azido-aracytidine. Although the E460D substitution led to only a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in vivo, with a 100% survival rate and no clinical signs observed in infected mice. Furthermore, no virus was detected in the sera, spleen, or brain of mice inoculated with the galidesivir-resistant TBEV. Our results contribute to understanding the molecular basis of galidesivir antiviral activity, flavivirus resistance to nucleoside inhibitors, and the potential contribution of viral RdRp to flavivirus neurovirulence.IMPORTANCE Tick-borne encephalitis virus (TBEV) is a pathogen that causes severe human neuroinfections in Europe and Asia and for which there is currently no specific therapy. We have previously found that galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, which is under clinical development for treatment of Ebola and yellow fever virus infections, has a strong antiviral effect against TBEV. For any antiviral drug, it is important to generate drug-resistant mutants to understand how the drug works. Here, we produced TBEV mutants resistant to galidesivir and found that the resistance is caused by a single amino acid substitution in an active site of the viral RNA-dependent RNA polymerase, an enzyme which is crucial for replication of the viral RNA genome. Although this substitution led only to a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in a mouse model. Our results contribute to understanding the molecular basis of galidesivir antiviral activity.


Assuntos
Adenina/análogos & derivados , Substituição de Aminoácidos , Farmacorresistência Viral , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Mutação , Pirrolidinas/farmacologia , Proteínas não Estruturais Virais/genética , Adenina/química , Adenina/farmacologia , Adenosina/análogos & derivados , Alelos , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Resistência Microbiana a Medicamentos , Encefalite Transmitida por Carrapatos/tratamento farmacológico , Genótipo , Camundongos , Pirrolidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...